

Bases & Dimension

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

01

02

03

Introduction

Basis

Dimension

04

05

Finite Dimensional Subspace

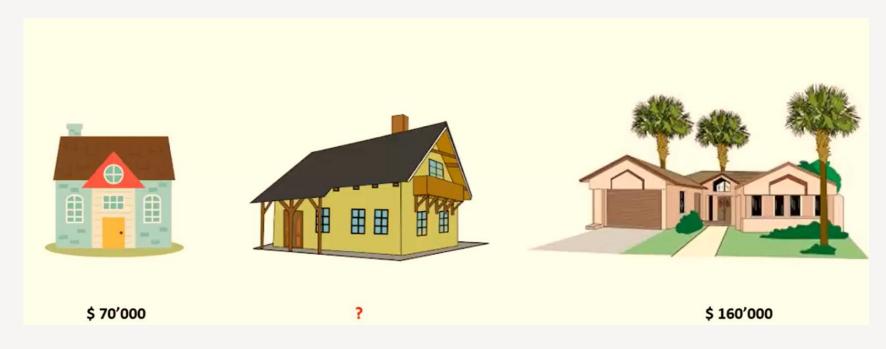
Coordinates

01

Introduction

Price Problem

0



Introduction

\$ 160'000

Size_part1 Size_part2 Size_part3 Size_part4 Size Age Floor Is_near_park]

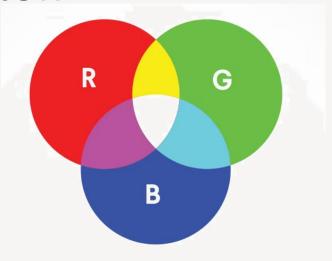
Home #1

Home #2

Home #3

Home #N

Introduction



(

02

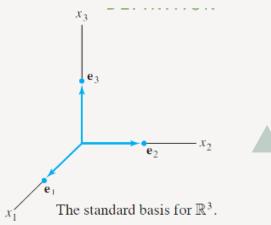
Basis

Basis

- A set of n linearly independent n-vectors is called a basis.
- A basis is the combination of span and independence: A set of vectors $\{v_1,\dots,v_n\}$ forms a basis for some subspace of

 \mathbb{R}^n if it

- (1) spans that subspace
- (2) is an independent set of vectors.



Basis

Definition

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{b_1, \dots, b_n\}$ in V is a **basis** for H if

- 1. \mathcal{B} is linearly independent set, and
- 2. The subspace spanned by \mathcal{B} coincides with H; that is,

$$H = Span \{b_1, \dots, b_n\}$$

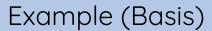
Example

Which are unique?

- Express a vector in terms of any particular basis
- \square Bases for \mathbb{R}^2
- \square Bases with unit length for \mathbb{R}^2

Vector Space of Polynomials

Be careful: A vector space can have many bases that look very different from each other!



- \square Standard bases for $P_n(\mathbb{R})$?
- \square Are (1-x), (1+x), x^2 basis for $P_2(\mathbb{R})$?

03

Dimension

Dimensions

- ☐ The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinitedimensional.
- The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted dim(V).

0

Bases and finite dimension

Theorem 1

Let V be a vector space which is spanned by a finite independent set of vectors $x_1, x_2, ..., x_m$. Then <u>any independent set</u> of vectors in V is finite and contains no more than m elements.

Conclusion

Every basis of V is finite and contains no more than m elements.

C

Independent ≤ spanning

Conclusion

In a finite-dimensional space,

the length of every linearly independent list of vectors

the length of every ≤ spanning list of vectors

Bases and finite dimension

Theorem 2

If V is a finite-dimensional vector space, then any two bases of V has the same (finite) number of elements.

0

Basis and finite dimension

The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted as dim(V).

Theorem 2

Theorem 3

Let V be a vector space with a basis B of size m. Then

- a) Any set of more than m vectors in V must be linearly dependent, and
- b) Any set of fewer than m vectors cannot span V.

Dimensions

Definition

A vector space V is called...

- a) finite-dimensional if it has a finite basis, and its dimension, denoted by dim(V), is the number of vectors in one of its bases.
- **b)** infinite-dimensional if it has no finite basis, and we say that $\dim(V) = \infty$.

Note

Dimension of subspace {**0**}?

Dimensions

Example

Let's compute the dimension of some vector spaces that we've been working with.

Vector space	Basis	Dimension	
\mathcal{F}^n (n-tuples each elements from field \mathcal{F})			
P^p (polynomials with max degree p)			Note!
$M_{m,n}$ (matrices with m rows and n columns)		4	
P (all polynomials)			
F (all functions)			
C (all continues functions)			

04

Finite Dimensional Subspace

Basis of Subspace

Theorem 4

If W is a subspace of a finite-dimensional vector space V, every linearly independent subset of W is finite and is part of a (finite) basis for W.

Theorem (Lemma) 5

Let S be a linearly independent subset of a vector space V. Suppose u is a vector in V which is not in the subspace spanned by S. Then the set obtained by adjoining u to S is linearly independent.

Basis of Subspace

Corollary

A subspace is called a proper subspace if it's not the entire space, so R2 is the only subspace of R2 which is not a proper subspace

If W is a proper subspace of a finite-dimensional vector space V, then Wis finite-dimensional and $\dim(W) < \dim(V)$

Corollary

In a finite-dimensional vector space V, every non-empty linearly independent set of vectors is part of basis.

Basis of sum of subspaces

Theorem 6

If W_1 and W_2 are finite-dimensional subspaces of a vector space V, the W_1

 $+W_2$ is a finite-dimensional and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$$

0

Basis of sum of subspaces

Theorem 7

If W_1 , W_2 and W_3 are finite-dimensional subspaces of a vector space V, then can we have the following relation?

$$\dim(W_1 + W_2 + W_3)$$

$$= \dim(W_1) + \dim(W_2) + \dim(W_3) - \dim(W_1 \cap W_2)$$

$$- \dim(W_2 \cap W_3) - \dim(W_1 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3)$$

Basis of sum of subspaces

Theorem 8

If W_1 , W_2 and W_3 are finite-dimensional subspaces of a vector space V, then:

$$\dim(W_1 + W_2 + W_3)$$

$$\leq \dim(W_1) + \dim(W_2) + \dim(W_3) - \dim(W_1 \cap W_2)$$

$$- \dim(W_2 \cap W_3) - \dim(W_1 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3)$$

Dimensionality and Properties of Bases

Note

Let V be a finite dimensional vector space over field F. Below are some properties of bases:

- Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
- 2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
- 3. Any linearly independent list of length dim V is a basis.
- 4. Any spanning list of length dim V is a basis.

We will learn about change of basis later.

05

Coordinates

Ordered basis

Definition

If V is a finite-dimensional vector space, as ordered basis for V is a finite sequence of vectors which is linearly independent and spaces V.

Be careful: The order in which the basis vectors appear in *B* affects the order of the entries in the coordinate vector. This is kind of janky (technically, sets don't care about order), but everyone just sort of accepts it.

Coordinate Systems

■ The main reason for selecting a basis for a subspace *H*; instead of merely a spanning set, is that each vector in *H* can be written in only one way as a linear combination of the basis vectors.

Note

Suppose the set $\mathcal{B} = \{b_1, ..., b_P\}$ is a basis for a subspace H. For each x in H, the **coordinates of** x **relative to the basis** \mathcal{B} are the weights $c_1, ..., c_P$ such that $\mathbf{x} = c_1b_1 + \cdots + c_Pb_P$, and the vector in \mathbb{R}^P

$$[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_P \end{bmatrix}$$

is called the **coordinate vector of** x (relative to B) or the B-coordinate vector of x.

Coordinate Systems

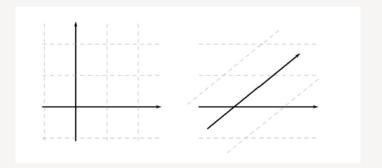
Example

Coordinate vector of $p(x) = 4 - x + 3x^2$ respect to basis $\{1, x, x^2\}$

0

Coordinate axes

The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and nonorthogonal axes can be advantageous.



0

Resources

- Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
- Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning

 \mathbf{c}